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Onthe Resonances ofa Dielectric Resonator

of Very High Permittivity

JEAN VAN BLADEL, FELLOW, IEEE

Abstract—It is shown that the modes of a dielectric resonator

are of two types: confined and nonconfined. Orthogonality proper-
ties and variational principles are derived for these modes, and their
radiation pattern and quality factor are investigated. The material of
the resonator is assumed lossless and of very high permittivity.

I. INTRODUCTION

A NONMAGIYETIC lossless body of dielectric con-

stant c, = N2, excited by sinusoidal volume sources

~ is shown in l“ig. 1. It is well known that the fields in and

around the resonator peak to high values at certain (reso-

nant) frequencies, and that the sharpness of the resonance

increases with AT, the index of refraction. Resonance phe-

nomena also occur when the dielectric is immersed in an

(incident) external field. Both cases are considered in

detail in a companion article. In the present paper, we

concentrate our attention on the properties of the resonant

modes, and in particular, on their field patterns and

quality factors.

Resonant modes are field structures which can exist in

the absence of ~. It is apparent that their determination

is a “coupled-regions” problem, as fields exist in V and V’.

An exact solution for arbitrary N is possible for a few

simple shapes, e.g., the sphere, for which separation of

variables is applicable [1], [2]. For a resonator” of arbi-

trary shape, general results are difficult to obtain. In

order to make some prtigress, we shall introduce a simplify-

ing feature, and assume that the perrnittivit y of the di-

electric approaches infinity. It should be immediately

evident that the problem remains of the “coupled-regions”

type, and that boundary surface S does not generally

behave as a “magnetic wall.” Consider Fig. 1, for example,

and assume that S is a magnetic wall (or “open circuit”).

This assumption implies that ~,an vanishes along S. But

~,,n is, in the case of Fig. 1, the only source of the field

outside S. It follows that the external field is zero. In

consequence, H. must also vanish along LS’.We conclude

that S’ can behave as a magnetic wall only if ~t,~ = 0

implies H. = O on S’. Clearly, such a restricted situation

can only exist for very special symmetries of the resonator

and of its source distribution. We must therefore accept

that H penetrates into the vacuum region, even for
.V * w . In that case, however, the field remains confined

in the immediate Viciriity of the resonator. It is sometimes
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Fig. 1. Dielectric resonator with volume sources,

assumed that the fields decrease exponentially with dis-

tance, as in the case of a plane wave totally reflected from

a dielectric–air interface. Richtmyer recognized early [3]

that the exponential decrease could not hold for all direc-

tions, as it would entail zero radiated power and infinite Q.

To avoid solving the coupled-regions problem, early in-

vestigators [4] assumed that S was a magnetic wall. It

was pointed out [5], [6] that this assumption could give

acceptable results for the higher order modes, but not for

the lower order ones. A better approximation, leaving

room for field penetration outside the resonator, was ob-

tained for the pillbox resonator by assuming that the

lateral surfaces are magnetic walls, but that the flat ends

allow fields to leak out [73, [8]. Leakage is calculated by

assuming that the resonator is enclosed in an infinite

waveguide with magnetic walls. In the present paper, we

attempt to free the analysis from these “ad hoc” assump-

tions, and to formulate the problem in a rigorous way.

II. GENERAL METHOD OF SOLUTION

A. Ezpansion in Powers of l/N

In letting .V approach infinity, two approaches are pos-

sible. The first is to keep the frequency constant and let

the number of wavelengths in V grow without limit. The

second is to concentrate on a given resonant mode, cor-

responding to a finite wavenumber k in the dielectric, and

to see what happens to the fields as N -+ ~. During this

limiting process, kL approaches an asymptotic value, finite

and different from zero (L is a typical dimension of the
resonator). This value is a characteristic of the mode. The

wavenumber kOin vacuo (k. = 2r/AO = lc/N = CO/cO)ap-

proaches zero, together with the frequency, and the wave-

length k. approaches infinity. We shall follow the second

limiting process, which is more realistic as dielectric res-

onators are normally dimensioned to resonate in one of
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their lowest modes. The mathematical solution proceeds

by expanding the fields in a series:

B = $0 -I- ~1/N + lj2/N2 + “SS

lZ=ITo+~,/N+~,/N2+ “o”. (1)

Expansions of the same kind have been introduced by

Stevebscm [9], who utilizes the wavemunber lco = k/N as

an expansion parameter. Stevenson’s method has been

applied to dielectric bodies, but under the assumption

that their dimensions are small with respect to ~diel = ko/~

[11], This restriction obviously excludes the study pf

resonances, where ~di.1 is of the order of the dimensions.

Expressions (1) do not suffer from this limitation. We

insert the% in Maxwell’s equations, an~ eqriate coefficients

of equal powers of l/N on both sides.’ The same is done

for the boundary conditions. For the configuration of

Fig. 1, where ~ is a fixed currefit independent of N, it is

found that all equations and boundary conditions are

satisfied by keeping only odd powers for R and even powers

for Iz in the expansions. Thus

‘E = E,/N + @N$ -t “ “ “

~=~,i-~,lN’+.... (2)

Maxwell’s equations give, in the dielectric,

curl 121 = -jlch?ollo

jk -
cgrl 170 = — EI + 7

R,
(3)

where Ro = 120z 0 is the characteristic resistance of

vacuum. We have omitted the equations for the higher

order terms, as well as the equatiohs which express that

all ~i and lTi are divergenceless. In vacuo

curl al’ = —jlcRo~Io’

curl 170’ = O

jk -
curl }Zz’ = — El’.

3?0
(4)

Notice that primes are used to denote the fields outside

the resonator.

./3. The Resonant Modes

The boundary conditions on S require all components
of the same order to be continuous, the exception being

the normal components of fi, which satisfy

Eln = o

E3. = 131fi’ (5)

Clearly, the dominant term of 1~, i.e., & is tangent to S

on the dielectric side. It therefore satisfies one of the

boundary conditions relative to a magnetic wall. The
second boundary condition (~ perpendicular to S) is

seldom satisfied, as explained earlier. In the limit AT~ ~ 1

the electric field fi is seen, from (2), to approach zero

every where (while the energy density c ] fl 12 remains
finite and different from zero in the dielectric). The mag-

netic field, however, approaches a limit RO different from

zero. A resonant mode corresponds to ~ = O in (3). Its

limit magnetic field (which should be denoted” by i?o~, but

will be written as 1~~ for simplicity) satisfies, from (3),

– curl curl ~~ + k~2~~ = O, in the dielectric

curl H~ = O, in vacuo. (6)

Outside the resonator, Em is therefore irrotational. It de-

creasps at least as fast as l/R8 at large distances. In the

following paragraphs, we shall investigate the limit field

~~ and” the eigenvalues k~2. It should be emphasized,

from the start, that the eigenvectors (6), and their posi-

tive eigenvalues k~2, are the limit forms for N ~ cc. For

jirrite N, terms of the kind Hs/N2 must be added to H~.

These terms can be determined by iterative procedures

based on equations such as (3) and (4). An ‘important

advantage of our method is apparent here. If it is desired

to find fields for a series of (high) values of N, it suffices,

according to (1), to evaluate a few terms such as ~o,~a,

and to multiply them by the relevant powers of I/N.

Series (1) then provides the answer.

The electric field, which vanishes for N ~ m, is different

from zero for N finite. To first order in l/N it is, from (3),

jRo
E=$=– —

.~k~
curl 11~, in V (7)

k the resonator. Outside the resonator it is also different

from zero, and gives rise to radiated powers and losses.

These losses make the eigenvalues in (6) complex, and

inkroduce damping in the otheryise sinusoidal oscillations.

The frequency” of oscillation of the damped mode j can be

obtained from the wavenumber lc~ of (6) by the simple

formula

(8)

The time constant of the oscillatory decay is directly

relate-d to the Q of the resonance. Expressions for Q will

be derived in Sections VI and VII.

The first-order corrections in l~N are sufficient as long

as the resonator remains small with respect to ho, the

wavelength in vacuo. Consider, e.g., the lowest mode of

the resonator. Its wavelength in the dielectric is of the

order of L. For ~, = 100, k. = N~di~l will be of the order

of 10L, and we feel that the low-frequency approximation

should he satisfactory in this case. For higher modes,

~di~l will be shorter than L, and higher values of c, are

necessary to justify our assumptions. What happens for

low values of e, is not within the province of this article.

The evolution of the modes can be followed on the example

of the sphere [1], [2]7 where it appears that the sequence

of modes is not conserved, i.e., that the “lowest” mode of

(6) does not keep its rank for sufficiently low values of N.

“Interior” modes (where the energy is predominantly

stored in the sample) and ‘(exterior}’ modes (where the

energy is concentrated on the separation surface aid out-

side the sample) appear at low N. This distinction is not

germane to our analysis: We are, indeed, interested in the
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lowest (finite) eigenvaluesof (6), andtheeigenvaluesof
~,___.

the exterior modes becomeinfinite for Ad w.
f>

--2=1
._.__G--

111. COIW?lNED AND NTONCONFINTED hlODES I I
The physical m~aning of the eigelivectors H~ is clear

from the preceding section. We shall now concentrate our

attention on the mathematical pro~erties of the solutions
[ J

~z....----”. ..+!,- ..~,~

of (6), irrespective of their physical interpretation. Our ‘--—-- --._~.

first task is to classify the eigenvectors according to the Fig. 2. Wa.veguiclecavity.

boundary conditions which they satisfy on S. More pre-

cisely, we shall investigate whether boundary surface S’

can act as a magnetic wall for certain modes. These modes

will be called <‘confined,” as their magnetic field vanishes

outside the resonator. It is hardly necessary to mention

that the confined character only holds in the limit N --i ~,

and that all modes have nonzero fields outside the res-

onator when N is finite.

From the considerations of Section I it follows that the
s’

confined modes satisfy Fig, 3, Resonator of revolution.

~ curl curl H. + k~2H. = O, in V

H. = o, on s. (9)

Clearly, these modes belong to the family of “electric”

eigenvectors of an empty cavity V bounded by metallized

walls 8 (boundary condition: zero tangential component

on S) [11]. There is, however, an important restrictive

feature: the normal component of the eigenvector must

also vanish everywhere on S. This requirement imposes

three scalar boundary conditions fm S, and therefore rnrer-

determkes the problem. We can consequently advance the

opinion that the most general resonator has no confined

modes. Thk point of view is supported by a study of the

modes of the rectangular parallelepiped, which can be

written down explicitly, and turn out never to be of the

“confined” type [10]. Special symmetries must therefore

exist. Cylindrical symmetry (i.e., a wavcguide cavity) is

not sufficient, as the parallelepipeds is a waveguide ca~ty.

Let us investigate under which conditions a cylindrical

cavity can support a confined mode (Fig. 2). The modes of

this cavity belong to two families [11] as follows,

1) Modes with a z component of ~~ of the form

(10)

Here, & is a Dirichlet eigenfunction of the cross section.

Clearly, these modes do not vanish on the end faces, and

cannot therefore be confined.

2) Modes which are purely transverse, and for which

where ~~ is a Neumann eigenfunction. Clearly, these

modes will be confined if, and only if, both ~~ and t)+r,,ld)~

vanish on the lateral walls. This condition is very special,

and is satisfied only by the modes of revolution of a cir-

cular cylinder. These considerations lead us to assert that

the confined modes exist only in bodies of revolution, and

that they are @independent (Fig. 3). Their general form

is

where IL satisfies, from (9),

$+:; +?:–:+?6.73=0. (13)

In addition, Dmvanishes on the axis and on the outer con-

tour (c). Ibr a circular cavity of radius a, for example,

with J1 ( r,) = O, and

“PS2=(9’+($’

(14)

(15)

An exception to the requirement of + independence is

afforded by the sphere. The sphere possesses very special

symmetry properties, and should therefore support a
large number of confined modes, This point of view is

confirmed by a detailed analysis of the cavity modes of

the sphere [11 ]. A large number of these have no radial

coniponent, and are therefore of the confined type, as

their H. is automatically zero on S. Their $ dependence is

of the form cm mi$ or sin mrj.

IV. ORTHOGONALITY PROPERTIES

A. Orthogonalitg Pwperttes OJ the ilfaynetie Pield

Consider two cigerrvectors satisfying the differential
equations

-- curl curl I~P + ii,’I~P = O (16)

in the dielectric. Dotting these equations, respectively,

with 17P and }~,mgives, after subtraction and integration,
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(km’ – lcp’) ~~~ H~”HP dV=\\~ [–i!/.-curl curl HP + HP
v v

. curl curl B~]dV. (17)

A classical Green’s theorem allows us to transform the

right-hand member into

/
1 = J [P.. (curl ~. X %) – H.. (curl Ilm X %)] cZS.

s

(18)

The symbols ~~ and ~p stand for the field values along

S, just inside the dielectric. But H is continuous across S.

Outside the dielectric, however, B is irrotational, and

equal to grad v?, where 4 is a suitable potential function.

In (18), we shall therefore replace ~~ and H, by grad, h

and grad, tip, where the subscript S refers to derivatives

along the surface. Thus

. (curl Em X ii.) AS. (19)

These expressions can be simplified by use of the following

key relationships [11]:

——
/..

fiin. curl ~ dS. (20)
s

Applying this transformation to (19) gives, because of

(20),

(21)

The form of the surface integrals suggests use of a Green’s

theorem, namely,

Il..Hm.HP dV =
//.

grad $.. grad +. dV
VI VI

(22)

The integral over the large sphere at infinity vanishes

because ~ is regular at infinity, which implies that ~ ap-

proaches zero at least as fast as l/R, and d~/&~ as fast

as l/R2. As t is harmonic,

(23)

Taking these properties into account transforms (21) into

. . .

I = – (lc~’ – lcP2) III H~.~n dV. (24)

Combining (17)

property, valid

eigenvalues:

JJJV,

and (24) leads to the final orthogonality

for eigenvectors belonging to different

/!/ Hm.Hp(w = o.
JJ+vr

(25)

It is to be noticed that the proof of the orthogonality is

still valid when one (or both) of the eigenvectors is of the

‘(confined’) type. For such a case, the integral over V’

vanishes automatically, and the resulting integral in (25)

is over V only.

The set of eigenvectors ~~ is not suitable to expand an

arbitrary vector function defined on V and V’. The set is

complete with respect to solenoidal vectors which behave

as H% outside V, i.e., which are irrotational in V’, and

vanish at least as fast as l/R3 at large distances.

B. Orthogonality Pro~erties of the Electric Field

The electric field of a mode is proportional to curl ~~.

The orthogonality proof for curl ~~ = ~~ piotieeds much

as for the magnetic field. We start from equations satisfied

by & and ~,, viz.,

— curl curl i~ + k~z~~ = O

— curl curl 1P + lcP2Xn = O (26)

and manipulate them as in the preceding paragraph.

write

– .1.. (curl& X tin)] cIS.

But curl ~ = curl (curl ~) = lc’~.It follows that

We

tin)

The integrals are of the type encountered in ( 18), and

have already been transformed there, Following the steps
leading from (18) to (21) gives here

Thk value is zero because of’ (23). We conclude that, for

vectors corresponding to different eigenvalues,

Il..~m.&dV =
///

curl ~~.curl ~P dV = O. (27)
v v

The orthogonality property is over the dielectric volume,

and not over all space (as was the case for ~~). The

curl l?~ form a complete solenoidal set in V.
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C. Equipartition of Energy

The electric field, as remarked before, is of order I/N.

It vanishes when Ngrows without limit, andso does the

electric energy inthe vacuum region. The average electric

energy in the dielectric does not vanish, however. For a

resonant mode it is, from (7),

By applying methods similar to those utilized in the proof

of the orthogonality property, one easily shows that

The electric energy is therefore equal to the magnetic

energy. The familiar property of equipartition of energy

in a resonant mode is seen to be still valid in the present

case.

V. VARIATIONAL PRINCIPLES

A. Variational Principle for Nonconjined Modes

We shall give this variational principle in a form which

is well suited for the application of the method of finite

elements. Let grad ~n represent H~ outside the resonator.

The desired functional is

J(+,~) = –/// I grad ~ 1’ dV
v!

+.l//v{;I Icurl i? 12– I 2712 dV. (29)

To derive the Euler equations, we assume that J is sta-

tionary about +0 and HO, and write

*=+O+CV

R =’ 170 + qt.

We insert these values in (29), and obtain, for J, a poly-

nomial of the second degree in the small parameter c. J is

stationary when 8J/& vanishes for e = O, i.e., when the

coefficient of c in the polynomial vanishes. This condition

yields

—
///

grad +O. grad q W + ~
11.7

curl 120- curl p cW
~1 v

We apply well-known

v and p everywhere as

vector relationships to introduce

coefficients in the integrand. The

203

preceding condition becomes

//. !/

13+o
qV2#0 dV + q—d~

VI s 6’n

The contribution from the large sphere at infinity is ig-

nored because the test functions must be regular at in-

finity, which means that both *O and ~ are regular there.

The form of (30) indicates that the stationarizing func-

tions satisfy the Euler equations

Vyo = o

1
— curl curl E. — Z70 = O.
~2

These are precisely the differential equations satisfied by

the sought eigenvectors. To transform the surface in-

tegrals in (30), let us choose the test functions such that

the tangential components of the eigenvectors are con-

tinuous on S. More precisely, let

From (20), the second surface integral in (30) can be re-

written as

The sum of the surface integrals is

A stationary field therefore satisfies the natural boundary

condition

(32)

B. Variational Principle for Modes of Revolution

In a volume of revolution, the nonconfined modes of

revolution are of the type (Fig. 3)

~n = curl (az@) = ~ grad (m) X ii+, in V

Em = curl (~@) = ~ grad (r~) X Z+, in V’. (33)

The functions a and y satisfy the differential e~uations
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[1: ::(m) +;+k’a

l%k!—— ---+: :-; +a$+k’a=o, in V

(34)

with the boundary conditions

1) a and y zero on the axis

2) a = 7 and tkz/8n = 8-y/8n on contour (c)

3) y proportional with sin O/R* at large distances. (35)

Solution of (34) and (35) proceeds by any of the methods

available for the determination of eigenvalues and eigen-

functions. If it is desired to apply the method of finite

elements, a suitable functional,l derived from (29), is

J(cr,y) =
//[ 1~grad (TY) ‘r dS

Sr

+ /-- {[ 1}
2

~ grad (ra) _ k’az ~ d~ (36)
Sm r

where S~ is the meridian cross section, and S the boundary

surface.

C. Variational Principle for the Confined Modes

The variational principle for a confined mode is classi-

cal, as this mode is one of the “electric” eigenvectors of

the volume of revolution [11]. The eigenvector is of the

form H~ = pa+, and the d~ffe~ential equation

/3 is given in (13). The relevant functional is

satisfied by

r dS. (37)

The test functions must vanish on the contour and on the

axis.

VI. THE Q OF THE NONCONFINED MODES

A. Magnetic Moment of the Modes

1) When N is infinite, the electric field vanishes outside

the resonator. lSToenergy is radiated, and the Q is infinite.

The calculation of the Q, therefore, has meaning only if

N is finite. Q is given by the classical formula

Q:
u X reactive energy

(3s)
average dissipated power “

We shall only consider losses due to radiation, and neglect,

as mentioned in the introduction, the influence of ma-

1The application of the method of finite elements to simple shapes
such as the coaxial ring or the circular cylinder is in progress. The
results will be published in a forthcoming report.

terial losses, These introduce a Qc{i.l, and the total l/Q is

the sum of l/~,.d and Ii Q~iel. Present-day materials have

Qdiel of the order of 1000 at X band (for N’s of the order
of 10).

To evaluate Q for large N, we shall replace the various

factors in (38) by their dominant term in an expansion
in l/N. The resonant angular frequency a, for example,

will be written as lc~(c/N), and the reactive energy set

equal to the value which obtains for N - co (the un-

perturbed value). This energy is the sum of the average

electric and magnetic energies in the mode, i.e., twice the

value appearing in (28). The main problem is the calcula-

tion of the average radiated power. To determine the

radiated field, we replace the resonator by its polarization

currents [3], [S], [12], which are

~ = jticO(N2 – 1)~.

For very high values of N,

It is this value which should be inserted in the expression

for the vector potential at large dktances, viz.,

X(F) = : /--- J(?’)
exp [–.i(k/N) I T – ~’ \] dv,

v 1~–#1

p. exp [–j(k/N)R]——
Gr R [/.!

~ dV
v

(40)

where ii is the direction of observation. The first integral

vanishes, as

(41)

The last integral is, indeed, zero for a closed surface [11:.

The dominant term in (40) is therefore the term in jk/fN,
which is known to give rise to magnetic dipole and electric

quadruple fields [13]. The electric quadruple term is

zero in our case because volume and surface polarization

charges are absent. The volume charges, proportional

with div ~, vanish because div ~ = div (curl ~~) = O.

The surface charges are also zero because X is tangent to

S, from (5), (7), and (39). We conclude that the dielectric

resonator radiates like a magnetic dipole of moment

This dipole moment is also the dipole moment of the

‘ ‘magnetostatic” field ~~ surrounding the resonator. Ap-
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plication of the formula for Q now gives

///
\ curl En 1’ cZV

61rN3 v
Q=w

m I Prn 1’

It is seen that the quality factor is proportional

an interesting result indeed.

(43)

with N3,

2) The va;ue of Pm appearing in (42) involves curl ~~.

It is possible to derive an equivalent formula in terms of

~~ by splitting pm in three terms of the form

(44)

Further manipulation of this expression leads to

where $~ is the potential from which ~~ can be derived

outside the resonator. The new value of the quality factor

is

B. Application to Modes of Resolution

For the modes of revolution appearing in (33), formulas
(4z) and (43) are particularly appropriate, as curl H~ has

the simple form

curl H~ = curl curl (ati@) = lc~zatio (47)

in the dielectric. The quantities of interest

pm = 7rlL?L2
/..

ar2 di$%
Sm

and

//
azv dS

12N3 ‘m
Q.=

m[/’~aPdi31’”

become

(48)

(49)

The lines of force of these modes are circular (azimuthal)

for ~, and meridian for ~. Outside the resonator, the lines

of ~ have the general aspect of those of a magnetic dipole.

C. Higher Modes

A resonant mode will radiate like a magnetic dipole

only if j% is cliff erent from zero. For certain modes this

moment vanishes. A particular example, chosen among

many others, is the following mode of a body of revolution:

curl ~~ = sin 24~n(7,2) + cos 2@B~(r,z) tie. (50)

In this expression ~~ is a suitable meridian vector. For

such modes, the term in ,jk/N in the expansion (40) for

the vector potential vanishes, and the first term to take

into consideration is the term in l/N2. The far fields are

now of order 1INS (instead of l/N2), and the radiated

power is of order l/NG. As a result, Q is proportional to

N5. More generally, an additional factor of N’ appears in

the quality factor Q each time a leading term disappears

in the expansion for the vector potential. The Q of the cor-

responding mode obviously grows faster with N than was

the case for the dipole. The phenomenon can be followed

clearly on the multipole modes of the sphere, which have

been studied in great detail [1], [2]. The high value of Q

means that little energy is radiated, hence that boundary

surface S is almost “leakproof.” This remark explains

why the “magnetic wall” condition is a better approxima-

tion for higher modes than for lower ones. Our analysis

confirms the conclusions of Yee [,5], [6]. This author

introduces E modes and H modes. The H mode is defined

as the mode which has a large normal component of mag-

netic field at the boundary surface. It corresponds to our

nonconfined mode. The E mode is a mode with no pre-

dominant normal component of K at the surface. It cor-

responds to a confined mode. Yee compares a spherical di-

electric resonator of high permittivity and a spherical

resonator of the same size and permittivity, bounded by

an open-circuit surface. For e, = 100, the resonant

frequencies of the E modes agree to within 1 percent. The

lower H modes, however, evidence differences of up to

14 percent.

Evaluation of Q for the quadrupole~ octupole, etc.,

modes is very intricate. The calculations will be carried

out for the confined modes only, which are precisely of

the type fi~ = O. Here, the evaluation of Q can serve as

an example for analog calculations concerning the higher

modes.

VII. THE Q O!J THE CONFINED MODES

A. Electric Moment of the Modes

1) For the modes described by (12) the polarization

currents J are meridian vectors independent of O. For

such currents,

automatically.

p.=; !!/ TX~dV=O
v

The next term in the expansion for the
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vector potential is

(51)

in which we set~ = curl~~. There is, however, a second

contribution of order l/N2. Thk contribution is obtained

by replacing the value of ~ appearing in (39) by an expres-

sion

J=

.

.

includlng higher terms. Thus

N’ – 1 curl ~
curl ~ – jue@ = jcoeO(NZ – l)fi = L

jfT2

N2–1

y (curl R. + * curl ~,)

()

1 1
curl H. 1 — — + ~ curl Hz.

j$T2
(52)

The second contribution in l/N2 stems from the insertion

of ( l/N2) curl Ha into (40). Thk gives

42(F) = ~ exp [–j(kR/N) ]

47r RN2 ///
curl E.2 dV. (53)

v

2) To evaluate ~1, we insert

(54)

in (51), where G is a unit vector characterizing the direc-

tion of observation (o,@). Elementary calculations yield,

taking into account that @vanishes on (c) (Fig. 3),

+ 27r sin 0 cos 0
//

&2 dS’i&
Sm

A few additional manipulations lead to

~, = _ ~. k’ exp [–j(kR/N) ] sin *——
% N2 R //

&2 dSii,. (55)
Sm

This vector potential generates an electric dipole field.

3) To evaluate ~,, we transform the integral in (53)

as follows:

= /! (’22. x 172’)ds
s

where S is the boundary surface of the volume of revolu-

tion. Consider the z component of this integral. Utilizing

(4) and (20) gives

1==– l..x div, (ik X ~z’) dS =
/’

x G.. curl ~f’ dS
s s

We conclude that

(56)

Inserting this expression in (53) shows that ~z also pro-

duces an electric dipole field. The total moment, sum of

the contributions of xl and & is

The quality factor can now be written as

Q.

.

/,,.!\ H~ 12dV

61rN3 v

W& I P. 12

12
!/

@zrdS
Sm

N5

J/ 11
2

w (l/TRO) E1.’z dS – jk @42 ds

s Sm

(58)

B. Discussion of the Dipole Moment

1) Formulas (57) and (58) indicate that a knowledge

of the normal component En’ = Eln’/N on S is necessary

for the evaluation of ~. and Q. The determination of Elm’

is a potential problem. ~1’ is indeed irrotational outside

the resonator, as Do’ vanishes there (4). We therefore set

I?( = grad@, in V’. (59)

The tangential component of this vector is known along S,

It is, from (7) and (12),

As ~~ is divergenceless, @ must be harmonic. The deter-

mination of El~’ = dO/dn therefore requires solution of

the problem

V%j = o, in V’

grad, O, given on S

(61)

The last condition expresses the absence of total electric

charge on the resonator. Notice that &l has all the ear-
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marks of an electrostatic dipole field, and is therefore of

order l/R3 at large distances. Trivial calculations show

that the generating moment of this electrostatic field is

precisely (57).

It is apparent, from the previous considerations, that

the determination of p, (and therefore of Q) is an exterior

potential problem. The dipole moment can be obtained

from a knowledge of El.’ = W/dn ,along S, or from the

value of o at large distances. Actual solution proceeds by

the classical methods of electrostatics, i.e., by difference

equations, finite-element methods associated with a vari-

ational principle, or by solution of an integral equation

on contour (c). From the knowledge of 4 the lines of force

of ~ can be traced outside the resonator. These lines are

meridian, and are similar to those of an electric dipole.

The lines of force of ~ are circular (azimuthal).
~) The dipole moment can also be evaluated by use of

a formula which gives the fields outside S in terms of cer-

tain field components on S, viz., [11]

tz
I

@

e
a R

Fig. 4. Spherical resonator.

6, = 14 8.35 3 0.254 1.5 4.20 6.16 0,.52
40 k: 40 3.08 0.153 39 20 6.20 0.312
86 141 127.,5 3.11 0.106 9264 6.23 0.214

The far-field version of this formula shows, after a few

calculations, that the resonator radiates like a dipole of

moment

APPENDIX

1) Let us apply our results to the modes of the sphere,

for which exact data are available. A typical nonconfined

mode is of the form (Fig. 4)

(sin lcR
Hm=2coso —–

)

cos kR _
R, k—

w ‘R

pm = – 47dcacos kaii=

Q.:a.
4

(66)

The solution ka = r yields the TEIO1 mode of Gastine

etal. [1] j [2] and ka = % the TEIOZ mode. Exact values

of Q (termed Q.X) have Kindly been communicated to the

author by L. Courtois. We compare these to the values

given by (66), which will be denoted by QP,,~. The values

ka = r and 2~ correspond, as discussed in Section II,

to the limit er ~ @. The exact values of ka are quoted

in Table I. We have also calculated the ratio of the

diameter 2a to the wavelength in free space, i.e., 2a/k0 =

(ka) ,x/mN. Clearly, the accuracy of Q increases when the

diameter of the sphere becomes smaller with respect to

the wavelength. Reasonable accu~acies (e.g., 10 percent)

require a ratio 2a/kO of the order of 0.1 or less.
2) As typical confined mode we take

(sin kR cos lcR

)
H.=@iib=s inO ~–k~ ii~

( (sin kR

)

k cos kR
sin kR sin kR cos JLR

+sin O ~–k’~–k~
)

a, (63)
curl ~m = ~ cos &@ —R, – R,

in the dielectric} and

()

Cos 8
H. = ka cos limgrad ~

(sin lcR
+ sin t% ~ –

kcoslcR _k2siniiR
RZ )R“

(67)

Ma cos i%a
The resonance condition is

ka cos ka
—

R3
Cos 13iin —

R3
sin OGO (64)

sin La - ka cos ka = O. (68)

outside the dielectric. The resonant wavenumber is given For this mode
by the condition sin ka = O. Application of (48) and (49),

where E.{ = 2jRok# cos ka cos 0. (69)

(sin hR COSkR
a=sino ——

R’ ‘c R )
(65)

Application of (57) and (58) gives, after trivial calcula-

tions,
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TABLE 11
_-. -—. —___ -—.—__. _—-— ——, - .—

TMlol TMIO!
———-,.———— —.

Q., QPe,, (ka)e. 2a/x, LA. QM (ka).~ 2J/hI
——— .—— —

e, =14’ 4.1 4.21 0.358 Il. ? 7.9 7.69 0.65.5
50 82 97 4.38 0.210 23.7 19 7.59 0.364
86 330 375 4.43 0.152 62.5 74 7.61 0.261

—-z_— ___ ———...—— ——

P. = j (4Lr/iVc) kaz sin kati.

Q = N5/2k~3a3. (70)

The values lia = 4.49 and ka = 7.73 yield, respectively,

the TM1OI and Tlfllol modes of Gastine, for whkh the re-

sults shown in Table II hold.
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The Excitation of Diekdric Resonators of Very

tiigh Perrnittivity

JEANT VAN BLAD~L, FELLOW, IEEE

Absfrcwf—Tk response of d dielectric resonator excited by

either interior volume sources or incident exterior waves is invest.i- 2=2.+ ++ $+...

gated. Special attention is devoted td phenomena at resondce, and

in particular to the induced electric and magnetic dipoles. Simple

formulas are obtained for the scattering cross section. The material HI H2

of the resonator is assumed lossless and of very high permittivity. H= Ho+@-@””””
(1)

I. INTRODIJCTION

I N A PRJ3CJW1N G article [1] we have investigated the

nat{lre and properties of the modes of a dielectric

resonator of very high permittivity. In the present paper

we make use of the modal properties, and in particular of

the orthogcmality relationships, to investigate the excita-

tion of a resonator by interior volume sources or, more
realistically, by exterior incident fields. Our general method

of attack is to ass~une tluat the index of refraction N of the

(loss]ess) dielectric is large, and to expand the fields as

Manuwript received January 14, 1974; revised J\me 3, 1974, and
September 12, 1974.
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Acoustics, the University of Ghent, (3hent, Belgium.

These expansions are inserted in Maxwell’s equations, and

terms of equal orders on both sides of these equations are

equated. The mechanics of the procedure will be described

in subsequent paragraphs. Our main purpose is to deter-

mine the dominant terms in (1), and in particular the

behavior of these terms in the vicinity of a resonance
k = km,. In the limit N -+ ~, the magnetic field ~. near

resonance must be proportional to the relevant eigeuvector
ti~, solution of [1],

curl }~~ = O in V’. (2)

Theie eigenvect ors satisfy the important orthogonality

properties [1]


