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On the Resonances of a Dielectric Resonator
of Very High Permittivity

JEAN VAN BLADEL, FELLOW, IEEE

Abstract—It is shown that the modes of a dielectric resonator
are of two types: confined and nonconfined. Orthogonality proper-
ties and variational principles are derived for these modes, and their
radiation pattern and quality factor are investigated. The material of
the resonator is assumed lossless and of very high permittivity.

I. INTRODUCTION

NONMAGNETIC lossless body of dielectric con-

stant e, = N?, excited by sinusoidal volume sources
J is shown in Fig. 1. It is well known that the fields in and
around the resonator peak to high values at certain (reso-
nant) frequencies, and that the sharpness of the resonance
increases with &V, the index of refraction. Resonance phe-
nomena also occur when the dielectric is immersed in an
(incident) external field. Both cases are considered in
detail in a companion article. In the present paper, we
concentrate our attention on the properties of the resonant
modes, and in particular, on their field patterns and
quality factors.

Resonant modes are field structures which can exist in
the absence of J. It is apparent that their determination
is a “coupled-regions” problem, as fields exist in V and V',
An exact solution for arbitrary N is possible for a few
simple shapes, e.g., the sphere, for which separation of
variables is applicable [1], [2]. For a resonator of arbi-
trary shape, general results are difficult to obtain. In
order to make some progress, we shall introduce a simplify-
ing feature, and assume that the permittivity of the di-
electric approaches infinity. It should be immediately
evident that the problem remains of the ‘“coupled-regions”
type, and that boundary surface 8 does not generally
behave as a “magnetic wall.” Consider IFig. 1, for example,
and assume that S is a magnetic wall (or “open circuit”).
This assumption implies that ., vanishes along S. But
Hyan is, in the case of Fig. 1, the only source of the field
outside S. It follows that the external field is zero. In
consequence, H, must also vanish along S. We conclude
that S can behave as a magnetic wall only if Hyan = 0
implies H, = 0 on S. Clearly, such a restricted situation
can only exist for very special svmmetries of the resonator
and of its source distribution. We must therefore accept
that H penetrates into the vacuum region, even for
N — . In that case, however, the field remains confined
in the immediate vicinity of the resonator. It is sometimes

Manuscript received January 14, 1974; revised June 4, 1974 and
September 12, 1974.

The author is with the Laboratory for Electromagnetism and
Acoustics, University of Ghent, Ghent, Belgium.

. vacuum V'

!
1
'
'
t
1
]
i
i

——m—— e | ———
1

Fig. 1. Dielectric resonator with volume sources.

assumed that the fields decrease exponentially with dis-
tance, as in the case of a plane wave totally reflected from
a dielectric-air interface. Richtmyer recognized early [3]
that the exponential decrease could not hold for all direc-
tions, as it would entail zero radiated power and infinite Q.
To avoid solving the coupled-regions problem, early in-
vestigators [4] assumed that S was a magnetic wall. It
was pointed out [5], [6] that this assumption could give
acceptable results for the higher order modes, but not for
the lower order ones. A better approximation, leaving
room for field penetration outside the resonator, was ob-
tained for the pillbox resonator by assuming that the
lateral surfaces are magnetic walls, but that the flat ends
allow fields to leak out [77], [8]. Leakage is calculated by
assuming that the resonator is enclosed in an infinite
waveguide with magnetic walls. In the present paper, we
attempt to free the analysis from these “ad hoe’” assump-
tions, and to formulate the problem in a rigorous way.

II. GENERAL METHOD OF SOLUTION

A. Expansion in Powers of 1/N

In letting .V approach infinity, two approaches are pos-
sible. The first 1s to keep the frequency constant and let
the number of wavelengths in 7 grow without limit. The
second is to concentrate on a given resonant mode, cor-
responding to a finite wavenumber & in the dielectric, and
to see what happens to the fields as N — . During this
limiting process, kL approaches an asymptotic value, finite
and different from zero (L is a typical dimension of the
resonator). This value is a characteristic of the mode. The
wavenumber k, in vacuo (ky = 2x/N = k/N = w/c) ap-
proaches zero, together with the frequency, and the wave-
length Ay approaches infinity. We shall follow the second
limiting process, which is more realistic as dielectric res-
onators are normally dimensioned to resonate in one of
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their lowest modes. The mathematical solution proceeds
by expanding the fields in a series:

j’j = Evo "‘f" El/N ‘+" E’g/Nz +
=1+ Hy/N + Hy/N> + «+-

Expansions of the same kind have heen introduced by
Stevenson [97], who utilizes the wavenumber ky, = k/N as
an expahsion parameter. Stevenson’s method has been
applied to dielectric bodies, but under the assurmption
that their dimensions are small with respect to Aie1 = N/N
[11]. This restriction obviously excludes the study of
resonances, where Ao is of the order of the dimensions.
Fxpressions (1) do not suffer from this limitation. We
insert them in Maxwell’s equations, and equate coefficients
of equal powers of 1/N on both sides. The same is done
for the boundary conditions. ¥or the configuration of
Fig. 1, where J is a fixed current independent of N, it is
found that all equations and boundary conditions are
satisfied by keeping only odd powers for & and even powers
for H in the expansions. Thus ‘

B = Fy/N + Fy/ N3 + -

(1

H=H0,+ H/N*+ ---. (2)
Maxwell’s equations give, in the dielectric,
curl iy = — j/cROHo
eurl A, = —E1+J (3)
Ry

where R, = 120% Q is the characteristic resistance of
vacuum. We have omitted the equations for the higher
order terms, as well as the equations which express that
all £; and H, are divergenceless. In vacuo

curl A = — JkRHY
curl HY = 0
-~ ik -
curl Ay = 2 Gy, (4)
R,

Notice that primes are used to denote the fields outside
the resonator.

B. The Resonant Modes

The boundary conditions on S require all components
of the same order to be continuous, the exception bemO‘
the normal components of £, which satisfy

Jln“_"O

Es, = Eyi)/. (5)
Clearly, the dominant term of E, i.e., Ey, is tangent to S
on the dielectric side. It therefore satisfies one of the
boundary conditions relative to a magnetic wall. The
second boundary condition (H perpendicular to S) is
seldom satisfied, as explained earlier. In the limit N — o,
the electric ficld E is seen, from (2), to approach zero
everywhere (while the energy density e|E |* remains
finite and different from zero in the dielectric). The mag-
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netic field, however, approaches a limit f, different from
zero. A resonant mode corresponds to J = 0in (3). Its
limit magnetic field (which should be denoted by Hym, but
will be written as H,, for simplicity) satisfies, from (3),

— curl curl H, + k2B, = 0,
curl A, =

in the dielectric

in vacuo.

(6)
Outside the resonator, M, is therefore irrotational. It de-
creases at least as fast as 1/R?® at large distances. In the
following paragraphs, we shall investigate the limit field
., and the eigenvalues k,2. It should be emphasized,
from the start, that the eigenvectors (6), and their posi-
tive eigenvalues k,’, are the limit forms for N — «. For
finite N, terms of the kind H,/N? must be added to H..
These terms can be-determined by iterative procedures
based on equations such as (3) and (4). An important
advantage of our method is apparent here. If it is desired
to find fields for a series of (high) values of N, it suffices,
according to (1), to evaluate a few terms such as Ho,Hs,
and to multiply them by the relevant powers of 1/N.
Series (1) then provides the answer.

The clectric field, which vanishes for N — o, is different
from zero for N finite. To first order in 1/N it is, from (3),
ik
N Nk

curl ., inV (7)
in the resonator. Outside the resonator it is also different
from zero, and gives rise to radiated powers and losses.
These losses make the eigenvalues in (6) complex, and
introduce damping in the otherwise sinusoidal oscillations.
The frequency of oscillation of the damped mode f can be
obtained from the wavenumber k. of (6) by the simple
formula

2zf 1

T k.

ko =
’ Cy N

(8)
The time constant of the oscillatory decay is directly
related to the @ of the resonance. Expressions for @ will
be derived in Sections VI and VII.

The first-order corrections in 1/N are sufficient as long
as the resonator remains small with respect to Ay, the
wavelength in vacuo. Consider, e.g., the lowest mode of
the resonator. Its wavelength in the dielectric is of the
order of L. For ¢, = 100, A\ = NAaiet will be of the order
of 10L, and we feel that the low-frequency approximation
should be satisfactory in this case. Ior higher modes,
Adiet Will be shorter than L, and higher values of e are
necessary to justify our assumptions. What happens for
low values of e, is not within the province of this article.
The evolution of the modes can be followed on the exarple
of the sphere [17, [2], where it appears that the sequence
of modes is not conserved, i.e., that the “lowest” mode of
(6) does not keep its rank for sufficiently low values of .
“Interior’” modes (where the energy is predominantly
stored in the sample) and “exterior” modes (where the
energy is concentrated on the separation surface and out-
side the sample) appear at low N. This distinction is not
germane to our analysis. We are, indeed, interested in the
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lowest (finite) eigenvalues of (6), and the eigenvalues of
the exterior modes become infinite for N — oo .

III. CONFINED AND NONCONTINED MODES

The physical meaning of the eigenvectors H,, is clear
from the preceding section. We shall now concentrate our
attention on the mathematical properties of the solutions
of (6), irrespective of their physical interpretation. Our
first task is to classify the eigenvectors according to the
boundary conditions which they satisfy on S. More pre-
cisely, we shall investigate whether boundary surface S
can act as a magnetic wall for certain modes. These modes
will be called “confined,” as their magnetic field vanishes
outside the resonator. It is hardly necessary to mention
that the confined character only holds in the limit N — =«
and that all modes have nonzero fields outside the res-
onator when N is finite.

From the considerations of Section I it follows that the
confined modes satisfy

= curl curl H,, + kn2H,, =0, inV

H, =0, on 8.

(9)

Clearly, these modes belong to the family of “electric”
eigenvectors of an empty cavity V" bounded by metallized
walls S (boundary condition: zero tangential component
on S) [117. There is, however, an important restrictive
feature: the normal component of the eigenvector must
also vanish everywhere on S. This requirement imposes
three scalar boundary conditions on S, and therefore over-
determines the problem. We can consequently advance the
opinion that the most general resonator has no confined
modes. This point of view is supported by a study of the
modes of the rectangular parallelepiped, which can be
written down explicitly, and turn out never to be of the
“confined” type [107. Special symmetries must therefore
exist. Cylindrical symmetry (i.e., a waveguide cavity) is
not sufficient, as the parallelepiped is a waveguide cavity.
Let us investigate under which conditions a cylindrical
cavity can support a confined mode (Fig. 2). The modes of
this cavity belong to two families [11] as follows.
1) Modes with a z component of H,, of the form
(H,)., = cos 73111’_3 B . (10)
Here, ¢, is a Dirichlet eigenfunction of the cross section.
Clearly, these modes do not vanish on the end faces, and
cannot therefore be confined.
2) Modes which are purely transverse, and for which

i, = sinﬁl’? . X grad ¥m (11)
where ¢ is a Neumann eigenfunction. Clearly, these
modes will be confined if, and only if, both ¢, and d¢../dn
vanish on the lateral walls. This condition is very special,
and is satisfied only by the modes of revolution of a cir-
cular cylinder. These considerations lead us to assert that
the confined modes exist only in bodies of revolution, and
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Fig. 2. Waveguide cavity.

Fig. 3. Resonator of revolution.

that they are ¢ independent (Fig. 3). Their general form
is

Ho = Bu(r2) iy (12)
where 8, satisfies, from (9),
PB LB BB B, e
or? + 7 ar + 922 g2 + En'B = 0. (13)

In addition, 8,, vanishes on the axis and on the outer con-
tour (¢). For a circular cavity of radius a, for example,

By = sin prz J1 (ms I) (14)
L a
with J1(r;) = 0, and
2 N\ 2
ip = (3"1> 1 <Q—> (15)
L o

An exception to the requirement of ¢ independence is
afforded by the sphere. The sphere posscsses very special
symmetry properties, and should therefore support a
large number of confined modes. This point of view is
confirmed by a detailed analysis of the cavity modes of
the sphere [117]. A large number of these have no radial
component, and are therefore of the confined type, as
their I, is automatically zero on S. Their ¢ dependence is
of the form cos me¢ or sin me.

1V. ORTHOGONALITY PROPLERTIES

A. Orthogonality Properties of the Magnetic Field

Consider two cigenvectors satisfving the differential
equations

— eurl cwrl Ho + bn2Hp = 0

— curl curl A, + k21, = 0 (16)

in the dielectric. Dotting these equations, respectively,
with H, and H,, gives, after substraction and integration,
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(kem? — kg?) /f/ﬁm-ﬁpdV=/// [ — Hyecurl curl A, -+ H,
14 14

ccurlcurl A, 7dV.  (17)

A classical Green’s theorem allows us to transform the
right-hand member into

I- / f [ (curl Hp X @) — Hypr (ourl B, X )] dS.
8

(18)

The symbols H,, and H, stand for the field values along
S, just inside the dielectric. But A is continuous across S.
Outside the dielectric, however, H is irrotational, and
equal to grad ¢, where ¢ is a suitable potential function.
In (18), we shall therefore replace H, and , by grad, ¢m
and grad. ¢,, where the subscript S refers to derivatives
along the surface. Thus

I = ff grad, Y- (curl H, X i,) dS — /f grad, ¥,
s s

-(curl H, X iin) dS. (19)

These expressions can be simplified by use of the following
key relationships [117:

/f grad, f+ (@, X P) dS —//fdivs(an X P) ds
8 8

= / fi+curl P dS. (20)
8

Applying this transformation to (19) gives, because of
(20),

i

o [ / o (in-Tm) S — Jey? / f Imin-H ) dS
S8 8

o / %‘9—'&”(15 — ke //% Wy y

The form of the surface integrals suggests use of a Green’s

theorem, namely,
/f/ grad ¢,-grad ¢, dV
v

fffwflm-f?,, av
I pvvnav = [ ou 3 as

(22)

(21)

Il

I

The integral over the large sphere at infinity vanishes
because ¢ is regular at infinity, which implies that ¢ ap-
proaches zero at least as fast as 1/R, and dy/dn as fast
as 1/R2 As ¢ is harmonic,

fffIHm = —ff *Pma% ds = ff xpp%ds

(23)
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Taking these properties into account transforms (21) into

I = — (e — k) ff/ a1, dv.
vt

Combining (17) and (24) leads to the final orthogonality
property, valid for eigenvectors belonging to different

cigenvalues:

V4-V'

(24)

B, dV = 0. (25)

It is to be noticed that the proof of the orthogonality is
still valid when one (or both) of the eigenvectors is of the
“confined” type. For such a case, the integral over V'
vanishes automatically, and the resulting integral in (25)
is over V only.

The set of eigenvectors H,, is not suitable to expand an
arbitrary vector function defined on V and V’. The set is
complete with respect to solenoidal vectors which behave
as H, outside V, i.e., which are irrotational in V’, and
vanish at least as fast as 1/R? at large distances.

B. Orthogonality Properties of the Electric Field

The electric field of a mode is proportional to curl ..
The orthogonality proof for curl H,, = A,, proceeds much
as for the magnetic field. We start from equations satisfied
by A and A,, viz.,

— curl curl A, + k24, =
— curl curl A o+ lcffin

-0 (26)

and manipulate them as in the preceding paragraph. We
write

T = (ka? — k2) /ff Aoy dV = /[ [ (eurl 4, X @)

— A, (curl A, X i) ] dS.
But curl A = curl(curl H) = k2H. It follows that

I=hp2 / / By (7 X curl ) dS — kn? f f .
S S

« (@i, X curl Hy) dS.

The integrals are of the type encountered in (18), and
have already been transformed there. Following the steps
leading from (18) to (21) gives here

I=rh (lcm //¢p6¢mds> e (sz/;//m—« lS)

This value is zero because of (23). We conclude that, for
vectors corresponding to different eigenvalues,

/// Ap A, dV = //f curl B,,-curl H,dV = 0. (27)
14 14

The orthogonality property is over the dielectric_ volume,
and r_lot over all space (as was the case for H,). The
curl H,, form a complete solenoidal set ¢n V.



VAN BLADEL: RESONANCES OF DIELECTRIC RESONATOR

C. Equipartition of Energy

The electric field, as remarked before, is of order 1/N.
It vanishes when N grows without limit, and so does the
electric energy in the vacuum region. The average electric
energy in the dielectric does not vanish, however. For a
resonant mode it is, from (7),

1 - -
= 8o e
2
= Zi%///lcurlﬁdeV
m 14
/f | curl A, |2dV.

By applying methods similar to those utilized in the proof
of the orthogonality property, one easily shows that

- ?///VWJFJ,,LPW: %:-“///prdv. (28)

The electric energy is therefore equal to the magnetic
energy. The familiar property of equipartition of energy
in a resonant mode is seen to be still valid in the present
case.

4]\/7”

V. VARIATIONAL PRINCIPLES

A. Variational Principle for Nonconfined Modes

We shall give this variational principle in a form which
is well suited for the application of the method of finite
elements. Let grad y., represent H,, outside the resonator.
The desired functional is

JW,H) = —///;/Igradgb]?dV

-I—///{ IcurlH|2—|H[2}dV (29)

To derive the Euler e_quations, we assume that J is sta-
tionary about ¥, and H,, and write

V=vs+ e

H = I-Io —+ €i.
We insert these values in (29), and obtain, for J, a poly-
nomial of the second degree in the small parameter . J is
stationary when 8J/8e vanishes for ¢ = 0, i.e., when the

coefficient of ¢ in the polynomial vanishes. This condition
vields

—//f grad ¢o-grad n dV + %;/// curl Hy-curl @ dV
v v
—/ffflo~ﬁdv = 0.
v

We apply well-known vector relationships to introduce
n and [ everywhere as coeflicients in the integrand. The
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preceding condition becomes
JI[ newav + [n——ds
v
1 o
+ — /f g+ (curl Hy X @,) dS
+ //f [ curl eurl A, — Eo] av = 0. (30)

The contribution from the large sphere at infinity is ig-
nored because the test functions must be regular at in-
finity, which means that both ¢, and 5 are regular there.
The form of (30) indicates that the statlonarlzmg func-
tions satisfy the Euler equations

V2\I/O=O

]lzgcurl curl Hy — Hy =
These are precisely the differential equations satisfied by
the sought eigenveetors. To transform the surface in-
tegrals in (30), let us choose the test funetions such that
the tangential components of the eigenvectors are con-
tinuous on 8. More precisely, let

grads ¢ = () an, on 8

gradsn = (7)tan, on S. (31)

From (20), the second surface integral in (30) can be re-

written as

1 _
1;2// grad, 7+ (curl Hy X @,) dS

- 710—2// Niin-curl curl H, dS = -]/n(ﬁn-ﬂo) ds.

The sum of the surface integrals is

i} _
JIE [—‘P—“ . uHo] as.
s Lon
A stationary field therefore satisfies the natural boundary
condition

%om 2 on S.
0

= fip*Hn, (32)
n

B. Variational Principle for Modes of Revolution

In a volume of revolution, the nonconfined modes of
revolution are of the type (Fig. 3)

_ 1 .
H, = curl (atiy) = ;grad (ra) X g, inV

H, in V7.

1
curl (yiig) = ;grad (ry) X g, (33)

The functions a and vy satisfy the differential equations
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ar?

2
— + % ke=0 WV
22

(34)

a Py . ,
61'[;5(7)] il

with the boundary conditions

1) « and y zero on the axis
2) a = v and da/3dn = dy/dn on contour (c¢)
3) v proportional with sin 8/R? at large distances. (35)

Solution of (34) and (85) proceeds by any of the methods
available for the determination of eigenvalues and eigen-
functions. If it is desired to apply the method of finite
elements, a suitable functional,® derived from (29), is

T(ayy) = f/s E grad (m)]zr a8
+ // {[ grad (m)] . kzaz}rdS

where S, is the meridian eross section, and S the boundary
surface.

(36)

C. Variational Principle for the Confined Modes

The variational principle for a confined mode is classi-
cal, as this mode is one of the “electric’” eigenvectors of
the volume of revolution [ 11]. The eigenvector is of the
form H, = Biis, and the differential equation satisfied by
B is given in (13). The relevant functional is

J = /f/v{icuﬂmz— kz[ﬁ]z} av
- JAG) +

The test funetions must vanish on the contour and on the
axis.

[ (rﬁ)] kZBZ}rdS. (37)

VI. THE @ OF THE NONCONFINED MODES

A. Magnetic Moment of the Modes

1) When N is infinite, the electric field vanishes outside
the resonator. No energy is radiated, and the @ is infinite.
The calculation of the @, therefore, has meaning only if
N is finite. Q is given by the classical formula

eactive e
Q= wXr : .v nergy ' (38)
average dissipated power

We shall only consider losses due to radiation, and neglect,
as mentioned in the introduction, the influence of ma-

1 The application of the method of finite elements to simple shapes
such as the coaxial ring or the circular cylinder is in progress. The
results will be published in a forthcoming report.
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terial losses. These introduce a Qu:1, and the total 1/Q is
the sum of 1/Q,.q and 1/ Quaier. Present-day materials have
Qaie1 Of the order of 1000 at X band (for N’s of the order
of 10).

To evaluate Q for large N, we shall replace the various
factors in (38) by their dominant term in an expansion
in 1/N. The resonant angular frequency w, for example,
will be written as k.(c/N), and the reactive energy set
equal to the value which obtains for N — « (the un-
perturbed value). This energy is the sum of the average
electric and magnetic energies in the mode, i.e., twice the
value appearing in (28). The main problem is the calcula-
tion of the average radiated power. To determine the
radiated field, we replace the resonator by its polarization
currents [37], [8], [12], which are

J = Jwe(N? — I)E'
For very high values of N,
J ~ jweN2E = curl H,. (39)

It is this value which should be inserted in the expression
for the vector potential at large distances, viz.,

A(,,.) - _/f J(—I) eXp[ 7(k/N) IT_—’F,D

=71

- to 00 (/)] [ /// v

av’

+j1\_7// (+7)J dV

o [ @rrrav+ -]

where @ is the direction of observation. The first integral
vanishes, as

ff/VJdV=/ffchr1ﬁde=//S(anxgm) a8

_ // n X grad, ¥m dS = 0.
S

(40)

(41)

The last integral is, indeed, zero for a closed surface [117.
The dominant term in (40) is therefore the term in jk/N,
which is known to give rise to magnetic dipole and elcetric
quadrupole fields [137]. The electric quadrupole term is
zero in our case because volume and surface polarization
charges are absent. The volume charges, proportional
with div J, vanish because div J = div (curl 7.,) = 0.
The surface charges are also zero because J is tangent to
8, from (3}, (7), and (39). We conclude that the dielectric
resonator radiates like a magnetic dipole of moment

1 o _
pn=3 [[[ FxTav =2 [[[ Fx conl Hnav. (a2)
= Vv Bl Vv

This dipole moment is also the dipole moment of the
“magnetostatic” field H,, surrounding the resonator. Ap-
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plication of the formula for @ now gives

///|curlﬁm |2dV
v

67 N3
¢ ke | D [*
/ff[curlflmlde
14

_ 24w N3

km5 2.
1//[?Xcurlﬁde\
4

It is seen that the quality factor is proportional with N3,
an interesting result indeed.

2) The value of §, appearing in (42) involves curl H,.
It is possible to derive an equivalent formula in terms of
H,, by splitting p» in three terms of the form

I= %a,x//fxcurlﬁde = iq,
14

X[/// curl (zf,) dV —///gradx)(]:lde].

(44)

(43)

Further manipulation of this expression leads to

Pm = /ffvflde—fL;&mands

where ¢, is the potential from which H, can be derived
outside the resonator. The new value of the quality factor

18
_ 6r N3 '/'/-‘/I./'—!—V/I He P dV, .
I uav = ff vasaas]

B. A/pplication to Modes of Revolution

(45)

Q (46)

For the modes of revolution appearing in (33), formulas
(42) and (43) are particularly appropriate, as curl H,, has
the simple form

curl H,, = curl curl (aity) = knlaiis (47
in the dielectric. The quantities of interest become
pn = what [ asa, (48)
Sm
and
[ / a’r dS
12N Sm
Q= (49)

I e
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The lines of force of these modes are circular (azimuthal)
for K, and meridian for H. Outside the resonator, the lines
of H have the general aspect of those of a magnetic dipole.

C. Higher Modes

A resonant mode will radiate like a magnetic dipole
only if $, is different from zero. For certain modes this
moment vanishes. A particular example, chosen among
many others, is the following mode of a body of revolution:

curl H,, = sin 264 ,(r,2) + 08 2¢Bn(r,2)dg.  (50)

In this expression 4, is a suitable meridian vector. For
such modes, the term in jk/N in the expansion (40) for
the vector potential vanishes, and the first term to take
into consideration is the term in 1/N2. The far fields are
now of order 1/N?® (instead of 1/N?), and the radiated
power is of order 1/N®. As a result, @ is proportional to
N&. More generally, an additional factor of N? appears in
the quality factor Q each time a leading term disappears
in the expansion for the vector potential. The @ of the cor-
responding mode obviously grows faster with N than was
the case for the dipole. The phenomenon can be followed
clearly on the multipole modes of the sphere, which have
been studied in great detail [17, [2]. The high value of §
means that little energy is radiated, hence that boundary
surface S is almost “leakproof.”” This remark explains
why the “magnetic wall” condition is a better approxima-
tion for higher modes than for lower ones. Our analysis
confirms the conclusions of Yee [5], [6]. This author
introduces E modes and H modes. The H mode is defined
as the mode which has a large normal component of mag-
netic field at the boundary surface. It corresponds to our
nonconfined mode. The £ mode is a mode with no pre-
dominant normal component of i at the surface. It cor-
responds to a confined mode. Yee compares a spherical di-
electric resonator of high permittivity and a spherical
resonator of the same size and permittivity, bounded by
an open-circuit surface. For ¢ = 100, the resonant
frequencies of the £ modes agree to within 1 percent. The
lower H modes, however, evidence differences of up to
14 percent.

Evaluation of @ for the quadrupole, octupole, etc.,
modes is very intricate. The calculations will be carried
out for the confined modes only, which are precisely of
the type p. = 0. Here, the evaluation of § can serve as
an example for analog calculations concerning the higher
modes.

VIi. THE @ OF THE CONFINED MODES

A. Electric Moment of the Modes

1) For the modes described by (12) the polarization
currents J are meridian vectors independent of ¢. For
such currents, \

1 -
ﬁm:;///FXJdV=O
< v

automatically. The next term in the expansion for the
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vector potential is

ko B exp [—jI;kR/N)]///; (@-#)J dV' + - .-

A, =
1 8 N2

(51)

in which we set J = curl A,.. There is, however, a second
contribution of order 1/N2 This contribution is obtained
by replacing the value of J appearing in (39) by an expres-
sion including higher terms. Thus

= = - - N
J = curl H — jugl = jue(N? — 1)E = :

I curl A
N?2—1 _ 1 _
= (eurl H,, + e curl H,)
. 1 1 _
=curl Hn |1 — Ve + s curl H,. (52)

The second con‘Eribution in 1/N? stems from the insertion
of (1/N?) curl H, into (40). This gives

Ao() = P SR LI (R/N) ] / / [ cull B, dV.  (53)
v

47 RN?
2) To evaluate A,, we insert
J = curl H,, = curl (Ba,) = (1/r) grad (r8) X iy

a8 1

S T R
= ot = (1B (54)

in (51), where 4 is a unit vector characterizing the direc-

tion of observation (6,¢). Elementary calculations yield,
taking into account that 8 vanishes on (¢) (Fig. 3),

JIf g av = x st J[ r@sar) o8) s,
v Sm

-+ 27 sin 8 cos @ / / Br? dSi..
Sm

A few additional manipulations lead to

© o B exp [—i(R/N)] e
A = T 2 sme‘/:/;mﬁr dSap.  (55)

This vector potential generates an electric dipole field.
3) To evaluate A,, we transform the integral in (53)
as follows:

f:]/fcurlﬁde=f/S (@ X Hy) d8
Vv

= [ @ x 8 as
8
where S is the boundary surface of the volume of revolu-

tion. Consider the z component of this integral. Utilizing
(4) and (20) gives

I, = [f G- (i X Hy') dS = f/ arad z- (i X H') dS
S S
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I,

—f/ v dive (@, X H) dS = ff & iy curl 7, dS
S 8

k -
j — i, Ey dS.
/[SWJRUM 1

We conclude that

- _ k
I=/ffcur1H2dV=j—f/Eln’de
v RoJJg

k
= j— i, E,'2dS.
JROU f'/s n 2

Inserting this expression in (53) shows that A, also pro-
duces an electric dipole field. The total moment, sum of
the contributions of A; and A, is

Be = [—j %0 f fs prds + - f fs Bu'z dS]ﬁz. (57)

The quality factor can now be written as

] 1. av

(56)

Q= 6w N3
- K3cg? l Do |2
12 2r dS
I o
= N .
2
1 | (1/7Ry) / f Bu'z dS — jk / / 812 S
S Sm

(58)

B. Discussion of the Dipole Moment

1) Formulas (57) and (58) indicate that a knowledge
of the normal component E,’ = E,’/N on S is necessary
for the evaluation of p, and Q. The determination of Ey,.’
is a potential problem. Ey is indeed irrotational outside
the resonator, as [y vanishes there (4). We therefore set

in V. (59)

The tangential component of this vector is known along S.
It is, from (7) and (12),

Ell = grad P,

Ry 08
2 . (80
Tk on e (60

~ Ry 1
(El,)t:m = _.9— grad (7‘6) X Hg =
ik r
As EY is divergenceless, ¢ must be harmonic. The deter-
mination of Hy' = d¢/dn therefore requires solution of
the problem

Vi = 0, in V’

grad, ¢, given on S

f/Em’dS - fj@ds _o.
R on

The last condition expresses the absence of total electric
charge on the resonator. Notice that Fy' has all the ear-

(61)
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marks of an electrostatic dipole field, and is therefore of
order 1/R? at large distances. Trivial calculations show
that the generating moment of this electrostatic field is
precisely (57).

It is apparent, from the previous considerations, that
the determination of 5, (and therefore of Q) is an exterior
potential problem. The dipole moment can be obtained
from a knowledge of Ei,’ = d¢/9n along S, or from the
value of ¢ at large distances. Actual solution proceeds by
the classical methods of electrostatics, i.e., by difference
equations, finite-element methods associated with a vari-
ational principle, or by solution of an integral equation
on contour (c). From the knowledge of ¢ the lines of force
of /i can be traced outside the resonator. These lines are
meridian, and are similar to those of an electric dipole.
The lines of force of [ are eircular (azimuthal).

2) The dipole moment can also be evaluated by use of
a formula which gives the fields outside S in terms of cer-
tain field components on S, viz., [11]

AnH = — grad // H, exp L= (k/N) |7 — 7 |]
8

7= 7]

as’

Jk _ = exp [—J(k/N) [F =71 .,
+NRO//S(“"XE’ T2 a5
+ curl// (itn X H) €Xp [_](]‘j/N)_|f— ) s’

s [F— 7|

The far-field version of this formuia shows, after a few
calculations, that the resonator radiates like a dipole of

moment
5 = f‘lU/ B a8 ~ [[ g, dS]. (62)
N1/

8

APPENDIX

1) Let us apply our results to the modes of the sphere,
for which exact data are available. A typical nonconfined
mode is of the form (Fig. 4)

_ sin kR cos kR\ _
Hm=20050< 75 -k Rz )uR
) sin kR sin kR cos kR\ _
—I—sm()( = — k2 7 —k 2 )uo (63)
in the dielectrie, and
.. [/
H,, = ka cos ka grad (C(;; )
2ka cos k k k
= — —/‘I%L cos Qg — ~g—%):—(—1 sin 8iiy  (64)

outside the dielectric. The resonant wavenumber is given
by the condition sin ka = 0. Application ot (48) and (49),

where
) sin kR cos kR
a = sin @ -k

R R (65)
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Fig. 4. Spherical resonator.

TABLE 1
 TEwm TE1:
Qex Qpert (ka)ex 20/7\0 Qex Qpert (ka)ex 2@/}\0
& = 14 13 8.35 3 0.254 15 4.20 6.16 0.52
40 50 40 3.08 0.153 39 20 6.20 0.312
8 141 127.5 3.11 0.106 92 64 6.23 0.214
gives
Pm = —4xka cos kaii,
N3
= — 66
Q 2ka (66)

The solution ko = =« yields the TEin mode of Gastine
et al. [17];, [2] and ka = 27 the TEy» mode. Exact values
of @ (termed Q) have kindly been communicated to the
author by L. Courtois. We compare these to the values
given by (66), which will be denoted by Qe The values
ka = = and 2r correspond, as discussed in Section II,
to the limit ¢, — «. The exact values of ka are quoted
in Table I. We have also calculated the ratio of the
diameter 2a to the wavelength in free space, i.e., 2a/), =
(ka)ex/7N. Clearly, the accuracy of @ increases when the
diameter of the sphere becomes smaller with respect to
the wavelengtli. Redsonable accuracies (e.g., 10 percent)
require a ratio 2a/X, of the order of 0.1 or less.
2) As typical confined mode we take

_ _ ) sin kR cos kR\ _
H, = Buag = snd 7 7 Uy
_ sin kR kcos kR
curl H, = 2 cos MR( I Ré )
. _ [sinkR kcoskR 2 sin kR
+s1n0uo( o m —k 7 >
(67)
The resonance condition is
sin ka — ka cos ka = 0. (68)
For this mode
E.f = 2jRok? cos ka cos 8. (69)

Application of (57) and (58) gives, after trivial calcula-
tions,
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TABLE II

TMior TMioe
Qox  Qpexs (ka)ex 2a/No Qex  Quert (ka)ex 2a/Xo
& = 14 6 4.1 4.21 0.358 11.3 7.9 7.69 0.635
50 84 97 4.38 0.210 23.7 19 7.59 0.364
86 330 375 4.43 0.152 62.5 74 7.61 0.261
Po = j(4n/Ne¢)ka? sin kail,
Q = N°/2k,%a?. (70)

The values ka = 4.49 and ka = 7.73 yield, respectively,
the TM;; and TMye modes of Gastine, for which the re-
sults shown in Table I1 hold.
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The Excitation of Dielectric Resonators of Very

High Permittivity

JEAN VAN BLADEL, FELLOW, IEEE

Abstract—-The response of 4 dielectric resonator excited by
either interior volume sources or incident exterior waves is investi~
gated. Special attention is devoted to phenomena at resonance, and
in particular to the induced electric and magnetic dipoles. Simple
formulas are obtained for the scattering cross section. The material
of the resonator is assumed lossless and of very high permittivity.

1. INTRODUCTION
N A PRIECEDING article [ 1] we have investigated the

nature and properties of the modes of a dielectric
resonator of very high permittivity. In the present paper
we make use of the modal properties, and in particular of
the orthogonality relationships, to investigate the excita-
tion of a resonator by interior volume sources or, more
realistically, by exterior incident fields. Our general method
of attack is to assume that the index of refraction IV of the
(lossless) dielectric is large, and to expand the fields as
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_ B E
B=Eo+5+t

Ay Ly
TN A '

I

(1)

These expansions are inserted in Maxwell’s equations, and
terms of equal orders on both sides of these equations are
equated. The mechanics of the procedure will be described
in subsequent paragraphs. Our main purpose is to deter-
mine the dominant terms in (1), and in particular the
behavior of these terms in the vicinity of a resonance
k = k,. In the limit N — o, the magnetic field H, near
resonance must be proportional to the relevant eigenvector

H,,, solution of [17,

—curl cutl H,, + kniH,, = 0 inVv

curl ,, = 0 in V', (2)
These eigenvectors satisfy the important orthogonality
properties [17]



